
10 The Delphi Magazine Issue 35

Beating the System:
RichEdit Controls, Part 2
by Dave Jewell

You will remember that in last
month’s column I began devel-

opment of a RichEdit 2.0 control.
This control, as you’ll recall,
requires the presence of the
RICHED20.DLL file, a library which
contains the underlying implemen-
tation code for the API-level con-
trol. At the time I wrote the original
article, it was my expectation that
Microsoft would do the decent
thing and make this DLL redistrib-
utable, but sadly this has proved
not to be the case. With luck,
Microsoft will ship RICHED20.DLL as
part of the forthcoming Windows
98 release. If not, then the water
will continue to get muddier.

I finished up last month by prom-
ising to make further enhance-
ments to the new control, and I also
indicated that I’d encapsulate the
new functionality into properties,
methods and events of the TRichE-
dit2component. Let’s do that now.

Information Hiding
And Encapsulation
To begin with, the testbed client
application contained a lot of code
that really should have been in the
control itself. As always, good com-
ponent design is dependent upon
attention to object oriented princi-
ples such as information hiding
and encapsulation. Last month’s
client code knew far more about
the rich edit control than was nec-
essary: instead of modifying a
property value to change the con-
trol’s behaviour, it sent a low-level
message directly to the window
handle. That was bad.

Let’s begin by making the auto-
matic URL detection into a prop-
erty of TRichEdit2. I’ve called this
Boolean property URLHighlight and
I’ve arranged things so that the
property defaults to True. In order
to do this, I’ve added a private vari-
able, fURLHighlight, to the control
along with a private method,

SetURLHighlight, which fields
assignments to this property and
sends em_AutoURLDetect messages
to the API-level window as
described last month.

As you’ll appreciate, when you
specify that a property has a cer-
tain default value, you are effec-
tively promising Delphi that the
property will be assigned this
value when the component is cre-
ated. Normally, one ‘makes good’
on this promise inside the con-
structor, but we can’t call Perform
inside the Create method since the
API-level window handle doesn’t
exist yet: this is a common error
made by many novice Delphi pro-
grammers. Instead, we need to
override the CreateWndmethod and
initialise the rich text edit control
from there.

While we’re at it, we need to
rationalise the notification mecha-
nism used to inform the client code
that a URL link has been clicked.
Rather than intercepting wm_Notify
messages in the application code, a
much cleaner, more Delphi-like,
approach is to use a custom event
such as OnURLClicked. In order to
implement this, I declared a new
event type as below:

TURLClickedEvent = procedure (Sender:

TObject; const TheURL: String;

Button: TMouseButton) of object;

This new event type passes the
clicked URL text to the application
program and also, as a conven-
ience, provides an indication of
which button was clicked. If you’re
developing an application using
this code, you might want to do
something completely different
when a highlighted URL is
right-clicked, for example.

Since we’re no longer intercept-
ing notify events at the client level,
we need to intercept them within
the control. Consequently, I wrote

a new routine, CNNotify, which
responds to notification messages.
Inside CNNotify I check for an
en_Link notification (as per last
month’s code) and call the
URLLinkNotification method
which has now moved into the con-
trol. It’s important to call Inherited
for messages that we’re not
interested in, so the original TCus-
tomRichEdit code can do its stuff.

Within the URLLinkNotification
method, the code retrieves the text
corresponding to the URL link and
then turns it into a string as before.
This time, however, the code
checks to see if our custom event
handler is assigned and, if so,
sends a OnURLClicked event to the
application. For maximum flexibil-
ity, I discriminate between the
three different mouse buttons and
fill in the final argument of the
event type based on the button
that was pressed.

Listing 1 shows the changes that
I made to the control in order to
roll the URL auto-detection capa-
bility into the control. This is a par-
tial code listing, a ‘delta’ of last
month’s code. Complete source
listings are included on the cover
disk. You’ll notice that in the URL-
LinkNotification routine, I’ve left
the option of you adding your own
code to deal with mouse move
events occurring over a URL link.
Depending on your needs, you
might want to define another event
type to handle this.

Of Selections,
Rows And Columns...
In last month’s code, I demon-
strated how to determine whether
a rich edit control currently has a
text selection through use of the
em_GetSel message. However, use
of this message is now discouraged
because it will only work when the
current selection is contained
within the first 64Kb of text. The

12 The Delphi Magazine Issue 35

type
TURLClickedEvent = procedure (Sender: TObject;
const TheURL: String; Button: TMouseButton) of object;

TRichEdit2 = class (TCustomRichEdit)
private
fURLHighlight: Boolean;
fURLClicked: TURLClickedEvent;
procedure SetURLHighlight (Value: Boolean);
procedure WMNCDestroy (var Message: TWMNCDestroy);
message wm_NCDestroy;

procedure CNNotify(var Message: TWMNotify);
message cn_Notify;

protected
procedure CreateWnd; override;
procedure URLLinkNotification (Link: Pointer);

public
constructor Create (AOwner: TComponent); override;

published
property URLHighlight: Boolean read fURLHighlight
write SetURLHighlight default True;

property OnURLClicked: TURLClickedEvent read fURLClicked
write fURLClicked;

end;
implementation
{$R *.DCR}
constructor TRichEdit2.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fURLHighlight := True;

end;
procedure TRichEdit2.CreateWnd;
var
mask: Integer;

begin
Inherited CreateWnd;
mask := Perform (em_GetEventMask, 0, 0) or enm_Link;
Perform (em_SetEventMask, 0, mask);
Perform (em_AutoURLDetect, Ord (fURLHighlight), 0);

end;

procedure TRichEdit2.SetURLHighlight (Value: Boolean);
begin
if Value <> fURLHighlight then begin
fURLHighlight := Value;
Perform (em_AutoURLDetect, Ord (fURLHighlight), 0);

end;
end;
procedure TRichEdit2.URLLinkNotification (Link: Pointer);
type
// Need to redefine this - RICHTEXT.PAS gets it wrong!
TTextRange = record
chrg: TCharRange;
lpstrText: PAnsiChar;

end;
var
sz: String;
TextRange: TTextRange;
pENLink: ^TENLink absolute Link;

begin
with pENLink^ do begin
SetLength (sz, chrg.cpMax - chrg.cpMin);
TextRange.chrg := chrg;
TextRange.lpstrText := Pointer (sz);
Perform (em_GetTextRange, 0, Integer (@TextRange));
case Msg of
wm_MouseMove : ;
wm_LButtonDown : if Assigned (fURLClicked)
then fURLClicked (Self, sz, mbLeft);

wm_MButtonDown : if Assigned (fURLClicked)
then fURLClicked (Self, sz, mbMiddle);

wm_RButtonDown : if Assigned (fURLClicked)
then fURLClicked (Self, sz, mbRight);

end;
end;

end;
procedure TRichEdit2.CNNotify (var Message: TWMNotify);
begin
if Message.NMHdr^.Code <> en_Link then Inherited
else URLLinkNotification (Message.NMHdr);

end;

➤ Listing 1
new routine to use is em_ExGetSel.
To use this routine, you pass a
pointer to a TCharRange data struc-
ture which contains a couple of
32-bit fields. On return from the
call, these fields are set up with the
starting and ending character
positions for the text selection.

With this in mind, I wrote a new
private method, GetGotSelection
(!), and used it to implement a new
boolean property called GotSelec-
tion. This property will always tell
the client application whether or
not there’s a current selection. If
you want immediate notification of
text selection changes you can just
use the OnSelectionChange event in
the normal way.

While I was at it, I decided to add
Row and Column properties to the
control so that the client software
could instantly determine the cur-
rent row and column position
within the text control. Much of the
time, text processing programs
don’t really need this information,
but it’s customary to display it in a
status bar at the bottom of the
screen along with CapsLock status
and so forth.

You might suppose that the rich
edit control would provide
messages such as em_GetLine and
em_GetRow, but as ever things are a

little more complex than that. In
addition, things work differently
according to whether or not the
text control currently has a selec-
tion. At the Windows API level, the
row and column numbers associ-
ated with RTF controls are zero-
based, but this tends to be confus-
ing to most end-users, only pro-
grammers and mathematicians
start counting from zero! I’ve there-
fore arranged that both Row and
Column start from 1 in terms of
what’s reported by the control.

The GetRow method sets the cp
(character position) variable to -1
on the assumption that there’s no
text selection. If there is a text
selection, then cp is assigned the
character position that corre-
sponds to the beginning of the
selection. Once this is done, an
em_LineFromChar message is sent to
the control in order to obtain the
actual line number.

For the sake of consistency, I’ve
written this code such that if
there’s a text selection, the Row and
Column properties will always
return the row and column posi-
tion of the beginning of the selec-
tion. According to the Microsoft
documentation, if you pass a value
of -1 as the wParam field and the con-
trol has a text selection, what gets

returned is the line index of the
beginning of the selection. How-
ever, this is wrong. In such cases,
what you get back is the line index
of the end of the selection. It’s
because of this undocumented
behaviour (What? Me, surprised?!)
that the GetRow method has to
figure out whether there’s a selec-
tion and adjust things accordingly.

Similarly, the GetColumn routine
involves extra complexity if
there’s a text selection present. In
such cases, it sends an em_ExLine-
FromChar message to the control in
order to figure out the line number
on which the selection begins. An
em_LineIndex message is then sent
to convert this line number into
the character position that corre-
sponds to the first character on
the first line of the selection.
Finally (phew!) this character posi-
tion is subtracted from the charac-
ter position of the start of the
selection. I wouldn’t be surprised if
there isn’t an easier way of figuring
this out but it’s been a long day,
and this is the best I could come up
with! The necessary additions to
implement the GotSelection, Row
and Column properties are summa-
rised in Listing 2. You’ll see that

14 The Delphi Magazine Issue 35

I’ve also added another integer
property, FirstLine. Reading this
property sends an em_GetFirst-
VisibleLine message to the edit
control and returns the number of
the first visible line of text in the
control, assuming that you’ve
used the vertical scroll bar to
scroll down through the text (if
you haven’t, then of course this
will always return zero). If you
want to give the user an indication
of the absolute line number within
a large file then you should add the
FirstLine property to the value of
the Row property.

Extended Support
For Undo And Redo
Last month I mentioned that the
version 2.0 rich text edit control
includes enhanced support for
undo/redo. In version 1, you’ve
only got a simple one-step undo
facility. In version 2, you’ve got a
full multi-step undo/redo facility.
The great thing about this is that
your application doesn’t have to
manage its own undo/redo buffer,
everything is handled internally by
the control [If want to know how to
implement your own multiple
undo/redo, check out Warren
Kovach’s detailed article in the May
1998 issue, #33. Ed].

TRichEdit2 = class (TCustomRichEdit)
private
function GetRow: Integer;
function GetColumn: Integer;
function GetGotSelection: Boolean;
function GetFirstLine: Integer;

published
property GotSelection: Boolean read GetGotSelection;
property Row: Integer read GetRow;
property Column: Integer read GetColumn;
property FirstLine: Integer read GetFirstLine;

end;
function TRichEdit2.GetGotSelection: Boolean;
begin
Perform (em_ExGetSel, 0, Integer (@fLastCR));
Result := fLastCR.cpMin <> fLastCR.cpMax;

end;
function TRichEdit2.GetRow: Integer;
var cp: Integer;
begin
cp := -1;
if GetGotSelection then cp := fLastCR.cpMin;
Result := Perform (em_LineFromChar, cp, 0) + 1;

end;
function TRichEdit2.GetColumn: Integer;
var lp: Integer;
begin
lp := Perform (em_LineIndex, -1, 0);
if GetGotSelection then lp := Perform (em_LineIndex, Perform
(em_ExLineFromChar, 0, fLastCR.cpMin), 0);

Result := fLastCR.cpMin - lp + 1;
end;
function TRichEdit2.GetFirstLine: Integer;
begin
Result := Perform (em_GetFirstVisibleLine, 0, 0);

end;

➤ Listing 2

So how do we implement this
functionality? If you look at this
month’s project (see the disk and
Figure 1) you’ll see that I’ve added
a redo button to the toolbar. In last
month’s code, the Tag property of
the undo button was set to $304
(wm_Undo) meaning that a wm_Undo
message was sent to the control

whenever this button was pressed.
For better consistency with the
rich text control, I’ve changed this
to $C7 (em_Undo) which is the cor-
rect notification message for use
with edit controls. Additionally,
the new redo button has a tag
value of em_Redo and fires this mes-
sage to the text control when
clicked. With just these few trivial
changes, you’ve automatically got
a multi-level undo/redo facility: try
it and see! It really is that simple.

However, the rich text control
provides a number of facilities for
adding a little more ‘spit and pol-
ish’ to the final result. For example,
how do we know whether to enable
the undo/redo buttons? In last
month’s code, I sent an em_CanUndo
message to the control in order to
determine whether or not to
enable the undo button. It turns
out that rich edit 2.0 implements
another message, em_CanRedo,
whose purpose should require no
further elaboration! I packaged up
these two messages into a couple
of boolean properties, CanUndo and
CanRedo, and incorporated them
into the edit control. The revised
EnableDisableToolbar code now
references these properties to
enable or disable the undo/redo
buttons.

➤ Figure 1: Here's our testbed application now sporting a row and
column indication in the status bar, along with a multiple undo/redo
facility accessible via the taskbar.

July 1998 The Delphi Magazine 15

When examining the code, you’ll
notice that I’ve implemented both
the boolean properties using a
common access routine called
GetBoolProp. If you create a control
that has a large number of proper-
ties of the same type, all of which
require very similar code, you can
greatly reduce the size of the gen-
erated code by using indexed
properties and a common access
routine as illustrated here. Moreo-
ver, you can often add another
property simply by adding a one
line property declaration to the
class declaration, and another one
line clause to the associated case
statement. However, Object
Pascal can go even better than
this, as we shall see.

So far, so good. But how many
actions can be stored in the con-
trol’s built-in undo/redo buffer?
The answer is 100, by default. How-
ever, it is possible to use a new
message, em_SetUndoLimit, to
increase or decrease the size of the
buffer. Microsoft point out that if
you increase the buffer, there must
be sufficient memory available to
accommodate the resized buffer,
but they don’t give any indication
of how big the buffer will be for a
particular number of ‘actions’, so
to speak. Nor is there any guidance
on the maximum possible number
of actions that can be assigned to
the undo buffer. Finally, although
there’s a em_SetUndoLimit message
for resizing the undo buffer, there
is no corresponding em_GetUndo-
Limit message for determining the
current undo limit.

Despite these shortcomings, I
decided to bite the bullet and add
an UndoLimit property to the edit
control. After all, the write-only
nature of the undo limit isn’t a
problem because we can just store
the current value in a private
member variable. However, in
terms of the allowable values for
the undo limit, I decided to set the
minimum allowable value to 10
and the maximum allowable value
to 400. Any property assignment
outside of this range is politely
ignored.

Some applications provide a
specially enhanced user interface
for undo/redo actions, according

to the type of
actions that are
available. For exam-
ple, take a look at
Figure 2, which
shows part of
Microsoft Word 97.
The drop-down
combo box lists the
available actions,
with some indica-
tion of what each
specific action
does. As you drag
the cursor towards
the bottom of the
combo, more and
more actions are
scheduled for
undoing.

The rich text edit 2.0 control
doesn’t give us as much functional-
ity as this (there is obviously some
custom book-keeping of undo and
redo actions being performed
inside Word itself), but it does
offer some useful help. For
instance, there are two new mes-
sages called em_GetUndoName and
em_GetRedoName. These two mes-
sages return an integer value
which indicates the type of action
(if any) which will be undone or
redone in response to an em_Undo
or em_Redomessage. In effect, these
messages let us ‘peek’ at the top-
most message in the undo/redo
buffer. The C/C++ declaration for
the returned integer value looks
like this:

typedef enum _undonameid {
UID_UNKNOWN = 0,
UID_TYPING = 1,
UID_DELETE = 2,
UID_DRAGDROP = 3,
UID_CUT = 4,
UID_PASTE = 5

} UNDONAMEID;

I turned this enumeration type into
the equivalent Pascal type (TUn-
doRedoType) and implemented a
couple of properties, UndoType,
RedoType, to return values from this
enumeration type. As before, I
wrote a common access routine,
GetUndoRedoType, which is used by
both of these properties: the
passed index value simply tells the
access routine which message to

➤ Figure 2: Word 97 provides a fancy undo/redo
facility which indicates the different categories
of actions available on the undo/redo 'stack'.

send to the control. Like the other
read-only properties that I’ve
introduced, do bear in mind that
these properties won’t appear in
the Property Inspector because it
will not display read-only
properties.

As a quick philosophical aside, if
you find this use of indexed prop-
erties interesting, you might not
realise that you can take things a
stage further in the interests of effi-
ciency and tight code. For exam-
ple, consider what would happen if
I were to declare the UndoType and
RedoType properties like those in
Listing 3.

In this case, the required mes-
sage type is directly encoded as
the index value. This effectively
means that we can completely
eliminate the case statement from
the access routine, and the code
for GetUndoRedoType collapses
down to that shown in Listing 4.

This is an extremely powerful
technique that relatively few
Delphi programmers seem to be
aware of. In this case, we’re effec-
tively using the Index attribute of a
property in just the same way that
we can use the Tag property of a
group of related push buttons to
discriminate between them, as in
my sample application that accom-
panies this article. Just as the Tag
property can discriminate
between a number of similar con-
trols, the Index property can be
used to discriminate between a
number of similar properties

16 The Delphi Magazine Issue 35

whose implementations are bun-
dled into the same access routine.
While not applicable in all circum-
stances, such techniques really
can help shrink your source and
object code and are a real testi-
mony to Ander’s genius for lan-
guage design. The code additions
that relate to undo/redo are sum-
marised in Listing 5.

Conclusions
There’s a great deal more that
could be done with this control, as
you can discover if you read
through Microsoft’s SDK docu-
mentation and the RICHEDIT.PAS
file that accompanies Delphi 3.0
and 4.0. However, you will
undoubtedly have your own ideas
about how you want to extend the
control and how you want to
implement properties. As a gen-
eral rule, I don’t like to burden a
control with dozens of different
properties, all of which do nothing
more than (for example) return
some boolean value. For example,
you might want to implement a set
of properties that indicate
whether the current selection (or
the text at the current caret posi-
tion) is bold, underlined, italic,
embossed, link text, and so forth.
Rather than implementing a host
of boolean properties, one for each
attribute, I’d encourage you to
implement a related set of controls
as (for example) a set type which
shows which bits are set and
which are cleared. Take a look at
how Inprise implemented the
Style sub-property in the Font
property and you’ll soon see what
I’m talking about.

This month and last, I’ve tried to
demonstrate some of the fun
things you can do with version 2.0
of the rich edit control and I hope
I’ve succeeded in that. The only fly
in the ointment (and it’s a fairly
substantially sized fly) is the
uncertain redistribution status of
RICHED20.DLL. I’ve spoken to Red-
mond about this and nobody was
able to give me a straight answer
as to whether or not you could
ship the DLL with your product, so
effectively you’re on your own! If
anyone is able to get chapter and
verse on this from Microsoft, do

type
TundoRedoType = (uidUnknown, uidTyping, uidDelete, uidDragDrop, uidCut,
uidPaste);

TRichEdit2 = class (TCustomRichEdit)
private
fUndoLimit: Integer;
function GetBoolProp (Index: Integer): Boolean;
procedure SetUndoLimit (Value: Integer);
function GetUndoRedoType (Index: Integer): TUndoRedoType;

published
property CanUndo: Boolean index 0 read GetBoolProp;
property CanRedo: Boolean index 1 read GetBoolProp;
property UndoLimit: Integer read fUndoLimit write SetUndoLimit default 100;
property UndoType: TUndoRedoType index 0 read GetUndoRedoType;
property RedoType: TUndoRedoType index 1 read GetUndoRedoType;

end;
function TRichEdit2.GetBoolProp (Index: Integer): Boolean;
begin
Result := False; { Stop compiler whinging }
case Index of
0 : Result := Perform (em_CanUndo, 0, 0) <> 0;
1 : Result := Perform (em_CanRedo, 0, 0) <> 0;

end;
end;
procedure TRichEdit2.SetUndoLimit (Value: Integer);
begin
if (fUndoLimit <> Value) and (Value >= 10) and (Value <= 400) then begin
fUndoLimit := Value;
Perform (em_SetUndoLimit, Value, 0);

end;
end;
function TRichEdit2.GetUndoRedoType (Index: Integer): TUndoRedoType;
begin
Result := uidUnknown; { Stop compiler whinging }
case Index of
0 : Result := TUndoRedoType (Perform (em_GetUndoName, 0, 0));
1 : Result := TUndoRedoType (Perform (em_GetRedoName, 0, 0));

end;
end;

➤ Listing 5

please let us know so we can pass
on the good/bad news.

As with last month’s column, the
disk includes the testbed source
and executable, a program which
is designed only to highlight vari-
ous aspects of what I’ve covered
here. It is not intended as a fully-
fledged word processor and many
parts of the program (such as
open/save file dialogs) are simply
not implemented. As noted last
time round, this code was written
using the Raize components ver-
sion 1.6 to implement the toolbar
and the status bar. Thus, if you
don’t have Raize components, you
won’t be able to rebuild the code. If
you insist on rebuilding the pro-
gram, and you don’t want to pay
for the Raize components in order
to do so, then you can get the

shareware version of Raize Com-
ponents from www.raize.com.
Finally, please note that in order to
reduce disk space requirements,
this executable was built using
packages. It expects to find the
Delphi 3 VCL runtime code, but for
your convenience I have incorpo-
rated the Raize code into the
executable itself. Thus, you can try
the demo without even installing
the Raize components.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
Dave@HexManiac.com

property UndoType: TUndoRedoType index em_GetUndoName read GetUndoRedoType;
property RedoType: TUndoRedoType index em_GetRedoName read GetUndoRedoType;

➤ Listing 3

function TRichEdit2.GetUndoRedoType (Index: Integer): TUndoRedoType;
begin
Result := TUndoRedoType (Perform (Index, 0, 0));

end;

➤ Listing 4

	Information Hiding And Encapsulation
	Of Selections, Rows And Columns...
	Extended Support For Undo And Redo
	Conclusions

